Vision Center GmbH - Basis Schulung Quicksurface

Agenda

Tag 1: Vorstellung der Basisfunktionen und funktionsspezifische Übungen

Tag 2: Überwiegend TN Übungen zum Umsetzen und Festigen des gelernten Wissens

Tag 1

1. Programmoberfläche

2. Basis Funktionen

- a. Importieren von STL und CAD Daten
- b. Exportieren von STL und CAD Daten
- c. Bewegung von importierten Daten
- d. Regelgeometrien aus Scandaten erzeugen
 - i. Bedingungen erzeugen
- e. Symmetrieebene
- f. Referenz Geometrie
 - i. Schnittlinien erstellen möglich
 - ii. Punkt aus 3x Ebenen möglich
- g. Mesh Selection
 - Magic, Freehand filled, Freehand, Line, rectangle, Circle, Durchselektieren ja/nein
- h. Clipping Box
 - 6x Clipping Ebenen mit denen das Scanvolumen reduziert werden kann. Die Daten werden standardmäßig nicht gelöscht sondern unsichtbar gemacht.

3. Ausrichtung von Objekten

a. Ausrichtung von Scandaten anhand von extrahierten Geometrien

- 4. Mesh Editing (Demo: aerosol_knob)
 - a. Polygonanzahl reduzieren
 - b. Edit individual meshes
 - i. Netzstruktur an/aus schalten im Edit-Mode
 - c. Remove floating outliers from mesh
 - i. Hier kann eine Fläche vorgegeben werden bis zu der alle Scanartefakte gelöscht werden
 - ii. Interaktive Kreis-Messfunktion nützlich um eine Fläche als Inputwert zu ermitteln bis zu der alle zusammenhängenden Einzelmeshes gelöscht werden
 - d. Fill mesh holes
 - i. Löcher füllen (auch größenabh. Mehrere)
 - ii. Semi-Mode → Löcher schrittweise bis zu den interaktiv zu setzenden Grenzlinien füllen
 - iii. Brücken-Mode → 2x Brückenlinien setzen und dann Loch füllen
 - e. Split mesh
 - i. Boolean Operationen um Meshes mit Oberflächen oder Solids zu schneiden oder zu verbinden
 - f. Boundary edit
 - i. Scandaten spiegeln -> Es entsteht eine kleine Lücke
 - ii. Über eine Ebene die man in die Lücke legt kann man eine Hülle von Xmm legen und einen Cut machen
 - iii. Über Boundaries → ZIP kann man gegenüberliegende Konturen die durch eine Lücke getrennt sind schließen
 - g. Defeature
 - h. Working with multiple Meshes (Demo: machine part S1 und machine part S2)
 - i. Alignment of scans of same part from different taken positions
 - i. Interactive Alignment, dann N-Points, dann global fine alignment
 - j. Merge global align and repolygonize
 - Funktion Repolygonize erstellt aus 2 oder mehr Meshes ein einziges Mesh

5. Übungen mit Mesh

- a. TN Übung 1 Split Mesh → Bearing housing: Für alle Scandaten wasserdicht und druckfähig machen → Hier kann man gut ein Demoteil mit Bohrungen nutzen die etwas deformiert sind
- b. TN Übung 2: Wasserdichtes Modell erzeugen → Aerosol Nob: Löcher schließen, Löcher expandieren, Brücken bauen

- 6. 2D-Zeichnungen erstellen (Demo: Bearing housing)
 - a. Einzelschnitt
 - b. Mehrere Schnitte
 - c. Extruded und Revolved Oberfläche
 - d. Skizzenfunktionen
 - i. Corner Trim
 - ii. Auto Fillet
 - iii. Trimming
 - iv. Constraints und Bemaßung in Skizzen
 - v. Zeichnungen projizieren
 - Nützlich bei Entformungsschrägen die dann ab einer gewissen Höhe gerade auslaufen
 - Zur Erstellung der Oberflächen bei Entformungsschrägen → Loft
 - vi. Offset in 2D-Sketch
 - Erzeugt Kopien der Geometrieelemente in einem gewissen Abstand zum Original. Kann auf das gesamte Profil in der Zeichnung angewendet werden → Wandstärken erstellen
 - vii. Mirror in 2D-Sketch
 - Es muss eine Konstruktionslinie für diese Operation erstellt werden und diese muss mit selektiert sein bei den Geometrien die gespiegelt werden sollen
 - viii. Linear und Circular Patterns
 - ix. Mesh Outline
 - x. Individual Sketches

- 7. Flächenerstellung / Surfacing
 - a. Fläche anpassen / Fit Surface (Demo: Impeller)
 - i. Approximiert Freiformoberflächen
 - ii. TN Übung: Impeller
 - b. 3D-Zeichnen / 3D-Sketch (Demo: bottle_partial)
 - i. z.B. um Aussparungen nachzubilden
 - ii. Können mit FillSurface zu Oberflächen verarbeitet werden. Ggf. mehrere 3D-Sketches erstellen um internal Curves beim

- FillSurface auswählen zu können damit die Oberflächenform besser abgestimmt wird
- iii. Können auch extrudiert werden → In Verbindung mit Fit Surface eine Oberfläche approximieren. Die approximierte Fläche mit extrudierter 3D-Zeichnung trimmen um die begrenzte Oberfläche zu erhalten
- c. Netzfläche Kurvenauswahl / Fill Surface (Demo: bottle_part)
 - i. 3D-Sketch → Fill Surface → Internal Curves generieren um n\u00e4her an das Mesh zu kommen
- d. Loft (Demo: bottle_part)
 - i. Oberflächen zwischen 2x oder mehreren Schnitten generieren.
 Wenn aus vielen Schnitten mit Loft eine Oberfläche generiert werden soll dürfen sie nicht gemischt offen und geschlossen sein
 - ii. Wenn der Schnitt erstellt wurde kann im "Sketch assist" auf "Splines" geklickt werden, so dass autom. die Scankontur im Schnitt erzeugt wird
 - Darauf achten das Control Punkte aktiviert sind, sonst werden die Linien nicht blau
- e. Fläche erweitern / Extend Surface → Vergrößern von Oberflächen in bestimmte Richtungen → Wichtig im Hinblick auf Trimm-Operationen
- f. Übergangsfläche / Blend Surface (Demo: bottle_part)
 - i. Geeignet um 2x benachbarte Oberflächen, die durch eine Lücke getrennt sind, zu schließen
 - Kann gut am Bsp. Bottle_part demonstriert werden,
 Erstellung 2x getrennter Oberflächen mit einer kleinen
 Lücke zueinander
- g. Leitkurven-Fläche / Sweep (Demo: Rahmen)
 - Aussparung erstellen mittels 3D-Sketch (Profil) und 2D-Sketch als Guided Curve
- 8. Freiform / Free-Form Modellierung
 - a. Frei-Formfläche / New Free Form
 - i. Add Face (Demo: aerosol_knob und TN Übung)
 - 1. Erstellt mittels Quads Oberflächen

- Wenn an dem aktuellen Quad eine Seite ausgewählt ist (gelb markiert) und dann in der Mitte das + Symbol erscheint kann mit STRG-Taste ein neues Quad an die Seite angehangen werden
- ii. Wenn mit Doppelklick auf eine Quadseite der ganze Konturzug ausgewählt wird (gelb markiert) können mehrere Quads gleichzeitig entlang der ganzen Auswahl neu angehangen werden
- iii. Wenn eine Symmetrie der Oberfläche vorliegt kann die erste Hälfte um die Symmetrieebene gespiegelt werden. Dazu die Chekbox "Symmetry" anwählen und die richtige Symmetriebene wählen
- iv. Wenn ein leerer Bereich zwischen der modellierten Fläche und der gespiegelten Fläche bleibt so kann nach Selektion der sich gegenüberliegenden Quad-Konturzüge (gelb markiert) und den Button "Set On Symmetry Plane" die Fläche geschlossen werden.
- v. Snap Mode
- vi. Wenn Snap Mode aktiviert ist werden die Kontrollpunkte der zu erstellenden Quads auf die Meshoberfläche angedockt
- b. Automatische Flächenerstellung / Automatic Surfacing
 - i. An 2x Beispielen → 1x wo es gut funktioniert und 1x wo es weniger gut funktioniert → Demo: drone & bearinghousing bzw.
 Lagergehäuse

Merge Quad Surfaces / Zusammenführen

 ii. Wenn mehrere unabhängige Quad-Oberflächen erstellt wurden können Sie datentechnisch zusammengeführt werden → Alle gewünschten Quad-Oberflächen im Baum selektieren → Rechtsklick → Merge

Tag 2

- 9. Hybrid modelling (TN Übung: Werkzeug / tool)
 - a. Kombination aus Freiformflächen und Regelgeometrien
- 10. Mehrere Details über versch. Skizzen abbilden (TN Übung: Maschinenteil / machine part)
- 11. Hybrid modelling an stark rotationssymetrischen Körpern (TN Übung Zahnrad 01 + Zahnrad 02 / gear 01 + gear 02)
- 12. Automatische Oberflächengenerierung (TN Übung Y-förmiger Halter / y-holder)
- Rekonstruktion individuelles Wunschobjekt (TN Übung am eigenen Scandatensatz)